On Some Properties of Solutions to One Class of Evolution Sobolev Type Mathematical Models in Quasi-sobolev Spaces
نویسنده
چکیده
Interest in Sobolev type equations has recently increased signi cantly, moreover, there arose a necessity for their consideration in quasi-Banach spaces. The need is dictated not so much by the desire to ll up the theory but by the aspiration to comprehend nonclassical models of mathematical physics in quasi-Banach spaces. Notice that the Sobolev type equations are called evolutionary if solutions exist only on R+. The theory of holomorphic degenerate semigroups of operators constructed earlier in Banach spaces and Frechet spaces is transferred to quasi-Sobolev spaces of sequences. This article contains results about existence of the exponential dichotomies of solutions to evolution Sobolev type equation in quasi-Sobolev spaces. To obtain this result we proved the relatively spectral theorem and the existence of invariant spaces of solutions. The article besides the introduction and references contains two paragraphs. In the rst one, quasi-Banach spaces, quasi-Sobolev spaces and polynomials of Laplace quasioperator are de ned. Moreover the conditions for existence of degenerate holomorphic operator semigroups in quasi-Banach spaces of sequences are obtained. In other words, we prove the rst part of the generalization of the Solomyak Iosida theorem to quasiBanach spaces of sequences. In the second paragraph the phase space of the homogeneous equation is constructed. Here we show the existence of invariant spaces of equation and get the conditions for exponential dichotomies of solutions.
منابع مشابه
Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملAnalysis and Pde on Metric Measure Spaces: Sobolev Functions and Viscosity Solutions
ANALYSIS AND PDE ON METRIC MEASURE SPACES: SOBOLEV FUNCTIONS AND VISCOSITY SOLUTIONS Xiaodan Zhou, PhD University of Pittsburgh, 2016 We study analysis and partial differential equations on metric measure spaces by investigating the properties of Sobolev functions or Sobolev mappings and studying the viscosity solutions to some partial differential equations. This manuscript consists of two par...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کامل